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Surface wave instabilities in a two-dimensional thin draining film are studied by a 
direct numerical simulation of the full nonlinear system. A finite element method 
is used with an arbitrary Lagrangian-Eulerian formulation to handle the moving 
boundary problem. Both temporal and spatial stability analysis of the finite-amplitude 
nonlinear wave regimes are done. As the wavenumber is decreased below the linear 
cut-off wavenumber, supercritical sinusoidal waves occur as reported earlier from 
weakly nonlinear analysis and experiments. Further reduction in wavenumber makes 
the Fourier spectrum broad-banded resulting in solitary humps. This transition from 
nearly sinusoidal permanent waveforms to solitary humps is found to go through 
a quasi-periodic regime. The phase boundaries for this quasi-periodic regime have 
been determined through extensive numerical parametric search. Complex wave 
interaction processes such as wave merging and wave splitting are discussed. In the 
exhaustive numerical simulations performed in this paper, no wave-breaking tendency 
was observed, and it is speculated that the complex wave-interaction processes such 
as wave merging and wave splitting curb the tendency of the film to break. 

1. Introduction 
Interfacial instabilities in thin liquid films draining down inclined or vertical walls 

have been studied extensively since the seminal work of Kapitza & Kapitza (1949). 
A vast body of literature exists on the thin-film instability and has been reviewed by 
Lin & Wang (1985), Chang (1994) and Joo (1995). The earliest theoretical studies 
into the thin-film instability were based on a hydrodynamic linear stability analysis 
(Yih 1955, 1963; Benjamin 1957; Whitaker 1964; Anshus & Goren 1966; Krantz 
& Goren 1971; Pierson & Whitaker 1977; Chin, Abernathy & Bertschy 1986). The 
basic flat-film solution is unstable to long-wavelength disturbances if the Reynolds 
number is greater than a certain critical value given by 

G,sinp = i c o t p .  (1.1) 
This linear stability result for the cut-off Reynolds number was experimentally verified 
by Liu, Paul & Gollub (1993). The linearly unstable region is bounded by two neutral 
curves given by: k = 0 and k = k , ( G , S , P ) .  Linear stability theory also predicts the 
wavenumber with the maximum linear growth rate ( k ~ ) .  In the absence of external 
periodic forcing, the waves at the point of inception are likely to be of the linear 
maximum growth rate wavenumber and partial experimental confirmation of this was 
provided by Alekseenko, Nakoryakov & Pokusaev (1985). 
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Approximate nonlinear stability theories have been developed to study the evolution 
subsequent to wave inception. For very thin layers the cut-off wavenumber is small, 
so that the nonlinear extension of the stability analysis can be accommodated by 
the small-wavenumber approximation and lubrication theory. By expressing the flow 
variables as a power series in e = ho/L, the complicated nonlinear system given by 
the Navier-Stokes equations can be reduced to a single nonlinear evolution equation 
for the film thickness h(x, t) .  Benney (1966) first derived the nonlinear evolution 
equation for two-dimensional flows accurate up to O(e2), but failed to observe any 
finite-amplitude permanent waves since the stabilizing surface tension appears to 
the leading order only in the neglected O(e3) terms. Weakly nonlinear analysis of 
the long-wave evolution equation up to various orders of accuracy has been done 
by Lin (1969), Gjevik (1970) and Nakaya (1975) among others, and they all predict 
supercritical finite-amplitude permanent waves for wavenumbers slightly lower than 
the linear cut-off wavenumber k,  in the presence of sufficiently large surface tension. 
Roskes (1970) extended the long-wave evolution equation of the Benney type to three 
dimensions. In two dimensions, with the scaling S - O(eP2) and G - 0(1), the 
long-wave evolution equation for vertically draining thin film is 

A complete nonlinear numerical solution of the long-wave equation has been obtained 
by Pumir, Manneville & Pomeau (1983) and Joo, Davis & Bankoff (1991), and they 
confirm the weakly nonlinear analysis prediction for the supercritical finite-amplitude 
waves for wavenumbers just below the linear cut-off wavenumber k,. Further, they 
predict surface waves of the ‘solitary hump’ type for wavenumbers much smaller 
than the linear cut-off wavenumber k,. For two-dimensional films, Sivashinsky & 
Michelson(l980) showed that, in the limit of large surface tension (S + a), and small 
wave amplitude ( lh - 1) << l), the evolution equation can be further simplified to the 
Kuramoto-Sivashinsky equation written as 

where A = h - 1 is the amplitude of the surface wave. 
For relatively thick layers, the lubrication theory breaks down, because the non- 

linear inertia terms are no longer small. In this case, an approximate Karman- 
Pohlhausen integral boundary layer theory can be used, where a velocity profile is 
imposed a priori. A number of different evolution equations have been derived, 
depending on the velocity profile imposed. A uniform velocity profile results in the 
shallow water theory of Dressler (1949). Alekseenko et a2. (1985) imposed a parabolic 
profile to derive a more appropriate evolution equation, which was further extended 
recently by Prokopiou, Cheng & Chang (1991) to higher-order accuracy. In the inte- 
gral boundary layer theory, a coupled set of two evolution equations is obtained, one 
for the flow rate q = u dy, and the other for the film thickness h(x, t). A parabolic 
velocity profile results in the following evolution equations : 

4 - 3 ~ ,  (1 .4~)  
ah 
ax 

Gsinp - Gcosp - + 3S- 
at 

ah aq 
at ax 
- + - = o .  (1.4b) 
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With some additional approximations, the above two evolution equations can be com- 
bined into one second-order wave equation for the film thickness h(x, t )  (Alekseenko et 
al. 1985). Lee & Mei (1996) derived an evolution equation, valid for larger Reynolds 
numbers and moderate Weber numbers, based on the boundary layer approxima- 
tion and a priori specification of a parabolic velocity profile. Chang, Demekhin & 
Kopelevich (1 993) solved the long-wave boundary layer equations without a priori 
specification of the velocity profiles. 

In the majority of the nonlinear studies based on the long-wave boundary layer 
equations, finite-amplitude permanent waves are assumed a priori and the stationary 
equations are solved in a frame of reference translating with the wave speed c. 
Chang et al. (1993), based on this type of analysis, predict slow-moving short nearly 
sinusoidal waves referred to as the y 1  family and fast-moving long solitary waves 
with one or more primary humps referred to as the 72  family. Based on a detailed 
bifurcation analysis of the third-order dynamical system resulting from the assumption 
of stationary waves, Lee & Mei (1996) found a variety of bifurcation phenomena, 
such as limit cycles, heteroclinic orbits, chaotic attractors and homoclinic orbits. 

The approximate nonlinear theories discussed above give very good predictions in 
the parameter ranges in which they are valid. The supercritical nearly sinusoidal waves 
for wavenumbers slightly lower than the cut-off wavenumber k,  and the subcritical 
solitary humps for even smaller wavenumbers k << k,  as predicted by the approx- 
imate nonlinear theories have also been observed experimentally. However, these 
approximate theories become inaccurate when the wave profile becomes steep thus 
exciting the higher harmonics, and the long wave, hydrostatic pressure and parabolic 
velocity profiles are no longer reasonable assumptions. To determine the nonlin- 
ear evolution of the thin-film flows without any a priori assumptions, the complete 
Navier-Stokes equations need to be solved. Owing to the irregular and time-varying 
flow domains involved, the finite element method (FEM) has been the popular method 
of choice in the direct numerical study of thin-film flows (Bach & Villadsen 1984; 
Kheshgi & Scriven 1987; Malamataris & Papanastasiou 1991 ; Salamon, Armstrong 
& Brown 1994). Ho & Patera (1990) used the Legendre spectral element method, 
which is a higher-order FEM. Bach & Villadsen (1984), Kheshgi & Scriven (1987) 
and Malamataris & Papanastasiou (1991) used a Lagrangian FEM to handle the 
moving boundary and control the mesh distortion through rezoning. Ho & Pat- 
era (1990) used a mixed Lagrangian-Eulerian representation to handle the moving 
boundary and Salamon et al. (1994) used the concept of vertical spines. 

Kheshgi & Scriven (1987) and Ho & Patera (1990) compare their full-scale numer- 
ical results with the Orr-Sommerfeld linear stability results for the neutral wavenum- 
bers. Ho & Patera (1990) obtained good agreement with the experimental results of 
Kapitza & Kapitza (1949) for the wave profiles and wave speeds. In finite-length do- 
mains without any periodic boundary conditions, Kheshgi & Scriven (1987) could not 
observe any steady travelling waves. However, Malamataris & Papanastasiou (1991) 
using a modified free boundary condition predicted travelling waves in truncated 
domains. 

Salamon et al. (1994) did a comprehensive direct numerical study of travelling 
waves in vertical thin films and compared their results against the approximate long- 
wave and boundary layer theories. They assumed a priori the existence of steady 
travelling waves and rewrote the governing equations in a frame of reference translat- 
ing with the wave speed. They thus solved the steady-state Navier-Stokes equations 
and computed the flow field, free-surface profile and wave speed simultaneously for 
a given wavelength and Reynolds number. They found good agreement with the 
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long-wave theory for small-amplitude waves, but their results qualitatively diverged 
from the long-wave results for large-amplitude waves. They also studied the nonlinear 
interactions between the waves and the secondary subharmonic bifurcations to longer 
waves. 

The present numerical study is different from the above-mentioned direct numerical 
studies in many respects. Firstly, with the exception of Salamon et al. (1994), all the 
previous numerical studies focus on the numerical procedure itself, and validate their 
approach by comparing with linear theory or experiments. They do not, however, 
perform a detailed study of the physics of thin-film instability. Salamon et al. (1994) do 
a very detailed study of the thin-film instability. However, they a priori assume steady 
travelling waves and solve the steady-state Navier-Stokes equations in a moving frame 
of reference. Steady travelling waves are only one of the many possible wave types, 
and there exist several aperiodic wave motions as well which are investigated and 
discussed in this paper. We also do the spatial stability analysis by taking a very long 
domain and imposing time-periodic disturbances at the inlet. This is usually the way 
stability is investigated in experiments, thus permitting us to make direct quantitative 
comparison between full-scale computations and experiments. This type of spatial 
stability study via full-scale computations has not been attempted previously to our 
knowledge. 

Experimental studies of falling films have been done by, among others, Kapitza 
& Kapitza (1949), Krantz & Goren (1971), Portalski & Clegg (1972), Alekseenko 
et al. (1985), and Lacy, Scheintuck & Dukler (1991). As summarized by Alekseenko 
et al. (1985), in most of the experiments performed, two-dimensional regular waves are 
observed only near the wave-inception line. The waves soon become three-dimensional 
and irregular. In order to obtain two-dimensional wavetrains, the flow was disturbed 
at a fixed frequency by, for example, wire vibrations (Krantz & Goren 1971) and 
pulsations of flow rate (Kapitza & Kapitza 1949; Alekseenko et al. 1985). Lacy 
et al. (1991) performed the experiments without artificial perturbations, and noticed 
that draining films exhibit deterministic chaos. More recent experiments have been 
performed by Liu et a2. (1993) and Liu & Gollub (1993, 1994) on an inclined plane 
surface to study the primary and secondary instabilities and solitary wave dynamics 
of film flow. Liu et al. (1993) measured the primary surface wave instabilities and 
found good agreement with the linear stability predictions for the cut-off Reynolds 
number, growth rates and wave velocities. Good experimental agreement with the 
linear theory has also been found by Knani & Bankoff (1993). Liu et al. also showed 
the primary instability to be convective in character and hence extremely sensitive to 
external noise at the source. Liu & Gollub (1993) found the primary surface wave 
instability to be susceptible to both sideband and subharmonic secondary instabilities 
but in different ranges of frequency. Liu & Gollub (1994) performed a systematic 
analysis of solitary wave dynamics in two dimensions and found the velocity of the 
solitary wave to be proportional to the wave height. Thus the bigger wave travels 
faster and coalesces in an inelastic manner with the smaller waves leaving behind a 
long flat interface. 

In this paper, the surface wave instabilities on isothermal thin-film flows draining 
down inclined or vertical walls are studied through the direct numerical solution 
of the initial value problem posed by the Navier-Stokes equations. The numerical 
method employed is the FEM and the free boundary problem is modelled through a 
mixed Lagrangian-Eulerian procedure called the ALE formulation. The mathematical 
system including the boundary conditions is described in $2 and the numerical 
procedure is briefly outlined in 53. In $4, comparisons are made with the experiments 
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FIGURF 1. Thin liquid film draining down an inclined plane: Problem definition 

of Kapitza & Kapitza (1949) and previous numerical simulations of Ho & Patera 
(1990) and Salamon et al. (1994). The nonlinear evolution of the thin film in spatially 
periodic domains with various wavenumbers and Reynolds numbers is studied in 
detail in  $5. In $6, the spatio-temporal evolution of the thin-film flow is studied 
by considering very long periodic and non-periodic domains. The findings of our 
full-scale numerical study are discussed in conjunction with what is already known 
about thin-film instability based on the approximate linear and nonlinear theories 
and experimental studies. 

2. Formulation 
We consider a two-dimensional thin liquid film draining down a planar rigid plate 

inclined at an angle p to the horizontal as shown in figure 2 .  The x-axis is aligned 
along the wall, and the y-axis perpendicular to the wall. The film thickness varies with 
location and time and is represented by h(x,t) .  We focus on laminar incompressible 
Newtonian and isothermal film flows, and write the Navier-Stokes equations and the 
continuity equation as 

U ~ + U U , + U U ,  =-p ,+Gs inp+  (u , ,+u , , ) ,  (2.la) 

ZI, + UD, + W ,  = -pJ - G cos p + (uYx + u,,) , (2 . lb)  
u, + Z’, = 0, (2.lc) 

where the length and time scales are chosen to be the mean film thickness ho and the 
viscous time scale hi/\!, respectively; v is the kinematic viscosity of the liquid film. 
The non-dimensional parameter G : 

is some times called the Galileo number, where g is the gravity. A different non- 
dimensional number Re = iiho/v results if the average velocity based on the Nusselt 
flat film solution U = ghi sin f i /  (3v) is used in the non-dimensionalization. Re and G 
are related as follows: 

G sin p 
Re = ~ 

3 
Thus, G sin /I can be considered as the Reynolds number Re. 
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On the bottom plate the no-slip and impermeability conditions are to be imposed: 

u = u = ~  a t y = 0 .  (2.2) 
The dynamics of the gaseous phase are neglected. The boundary conditions at the 
free surface are the zero-shear-stress condition, 

(u, + u.) (1 - hT;) - 4uxhx = 0, (2.3) 
the normal-stress condition, 

(2.4) 

and the kinematic condition, 

The non-dimensional parameter S is a measure of the surface tension, and is given 
h, + uh, = U. (2.5) 

by 
oh0 s = -  
3pv2 

where o is the surface tension coefficient and p is the density of the liquid. 

3. Numerical procedure 
The numerical procedure employed to solve the mathematical system described in 

the previous section is briefly outlined next. The most difficult aspect of this problem is 
the presence of the a priori unknown moving boundary. A mixed Eulerian-Lagrangian 
description of flow is used which combines the advantages of the pure Eulerian 
and pure Lagrangian approaches. The mathematical equations are rewritten in the 
Arbitrary Lagrangian Eulerian (ALE) formulation. In this formulation, the numerical 
grid points move independently of the fluid particles. The ALE formulation has been 
used in the solution of several free-surface problems (e.g. Amsden & Hirt 1973; Hirt, 
Amsden & Cook 1974; Chan 1975; Pracht 1975; Hughes, Liu & Zimmerman 1981; 
Ramaswamy & Kawahara 1987b; Huerta & Liu 1988; Soulaimani et al. 1991) and 
of fluid-structure interaction problems (e.g. Donea, Giuliani & Halleux 1982; Donea 
1983; Belytschko & Flanagan 1982; Liu et al. 1988). The mathematical system given 
by (2.1) is rewritten in the ALE formulation as follows: 

u, + (u  - wX)ux + (u - wy)u, = -px + G sin B + u, + u,,, ( 3 . 1 ~ )  
0, + (U  - wx)uX + (U  - W’)V, = - p y  - G cos B + v,, + u , ~ ,  (3.lb) 

u, +u, = 0; ( 3 . 1 ~ )  

wx and w, are the mesh point velocities in the x- and y-directions respectively. The 
boundary conditions remain the same in the ALE formulation. By judicious choice of 
wx and w, very large deformations can be handled and at the same time a sharp gas- 
liquid interface can be maintained. The representation of the free surface as a height 
function h(x,t) makes this very easy. The free surface is parameterized by vertical 
spines equally spaced in the x-direction. Along each vertical spine a predetermined 
number of grid points is assigned and distributed depending on the location of the 
free surface. Thus the mesh points only slide up and down along the vertical spines 
and do not move in the horizontal direction (wx = 0), thus eliminating the problem 
of mesh distortions which are common in pure Lagrangian approaches. 
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On the free surface there are three boundary conditions that need to be satisfied: 
(2.3), (2.4) and (2.5). In the numerical solution of the Navier-Stokes equations two 
boundary conditions are sufficient and the third one is used to update the location 
of the free surface every time step. The stress conditions are imposed in the solution 
of the Navier-Stokes equations and the kinematic free-surface condition is used to 
update the free-surface location. Moreover, the kinematic condition is numerically 
solved in an alternative equivalent form given by 

where Q = ~ ~ ( x ' f )  u dy is the volumetric flow rate. If the spatial domain is periodic 
in the streamwise direction, the above one-dimensional equation is integrated in time 
using the second-order-accurate Leap Frog scheme and the spatial derivatives are 
computed using the Fourier spectral method (FSM). If the spatial domain is non- 
periodic in the streamwise direction, the kinematic condition is integrated in time 
using the second-order-accurate Adams-Bashforth scheme and the spatial derivatives 
are computed using the central differences finite difference method (FDM). 

The various steps involved in calculating the flow field and mesh point location 

point location (u", z)", p", x", y", h") previous time level is described next. The first step 
in each time step calculation involves finding the new free-surface location hn+l using 
the previous time level free-surface height h" and velocity field u". Knowing the new 
time level free-surface height h"+', the grid points are redistributed along the vertical 
spines in an equi-spaced manner. Since the grid points move only along the vertical 
spines, x"+l = x" and w x  = 0. The mesh velocities in the y-direction are calculated as: 
WY = ( p + l  - y") /A t ,  where At is the time step size. Knowing the updated mesh point 
locations (x"+', y"+') and mesh point velocities ( w x ,  wJ') the velocity and pressure field 
is calculated next. The continuity equation (3 .1~)  is replaced by an equivalent pressure 
Poisson equation, and the fractional step method, first proposed by Chorin (1967) is 
used for the time discretization of the Navier-Stokes equations (3.1). The pressure 
gradients are dropped from (3.1a, b)  and approximate velocities not necessarily di- 
vergence free are computed first. The pressure gradient terms are then added back 
to these approximate velocities in such a way that the final velocities are divergence 
free. The fractional step method which is also called the projection method, or the 
velocity correction method is being increasingly used in the numerical solution of the 
Navier-Stokes equations (e.g. Chorin 1967; Temam 1971 ; Patankar 1980; Pironneau 
1982; Donea, Giuliani & Lava1 1982; Mizukami & Tsuchiya 1984; Kim & Moin 
1985; Kawahara & Ohmiya 1985; Van Kan 1986; Glowinski 1986; Bell, Colella & 
Glaz 1989; Gresho 1990; Gresho & Chan 1990; Le & Moin 1991; Oden 1992; Fin- 
layson 1992; Ramaswamy, Jue & Akin 1992). The fluid domain is spatially discretized 
through three-node triangular elements and equal-order approximation for velocity 
and pressure is used. The equal-order approximation for the velocity and pressure (also 
called the non-staggered grid) has been used by several researchers in the numerical 
solution of the Navier-Stokes equations (e.g. Schneider, Raithby & Yovanovich 1978 ; 
Rice & Schnipke 1986; Ramaswamy & Kawahara 1987a; Shaw 1991; Zienkiewicz & 
Wu 1991, 1992; Behr, Franca & Tezduyar 1992; Gresho et al. 1994). 

Most of the results to be reported later used 11 points in the y-direction. In the 
x-direction the number of mesh points varied from as small as 65 to as large as 2001 
depending on the length of the domain. Where possible, mesh-independent tests have 
been performed. 

(un+1,2in+l  , p + l  , X n + l  , p + l  , h"+') at the next time level, knowing the flow field and mesh 
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4. Comparison with experiments and previous full-scale numerical studies 
Kapitza & Kapitza (1949) obtained two-dimensional permanent waves on thin 

films draining down a cylinder by artificially perturbing the flow rate at a fixed 
frequency and amplitude. Ho & Patera (1990) and Salamon et al. (1994) compared 
their full-scale numerical results with the experimental findings of Kapitza & Kapitza 
(1949) for the two conditions listed in table 1. These two experimental conditions 
are numerically simulated through our full-scale numerical procedure and compared 
with the experimental results of Kapitza & Kapitza (1949), Ho & Patera (1990) and 
Salamon et al. (1994). 

What is investigated in experiments is the spatial stability, where a periodic dis- 
turbance is imposed at the inlet and its evolution in the streamwise direction is 
determined. For periodic forcing at the inlet, sufficiently far downstream from the 
inlet Kapitza & Kapitza (1949) observed saturation of the disturbance and the waves 
travel downstream with fixed wave speed and wavelength. Numerically, however, 
the equilibrium wave profile and wave speed are obtained through temporal stability 
analysis. A streamwise-periodic disturbance with wavelength A as obtained in the 
experiments is imposed as follows : 

(4.1) 
and its evolution in time is computed through the direct numerical solution of the 
full nonlinear system given by (3.1). k = 271h0//2 is the non-dimensional wavenumber, 
and the boundary conditions in the streamwise direction are 

f$(x = O )  = qqx =A), (4.2; 

where 4 stands for h, u, u and p. Saturation of the disturbance in time implies steady 
travelling waves with fixed wave speed and wave profile. These numerically computed 
wave profile and wave speed are then compared with those obtained by Kapitza & 
Kapitza (1949). To start our numerical calculations, we need to specify the mean 
film thickness. However, Kapitza & Kapitza (1949) do not provide the mean film 
thickness, and instead give the flow rate. Using the experimental flow rate Q, the 
mean Nusselt film thickness ho is computed as 

B. Ramaswamy, S. Chippada and S. W Joo 

h(x,O) = 1 + 6 cos(kx), 

1/3 ho=(y) . (4.3) 

This mean film thickness is then used to compute the non-dimensional parameters G, 
S and k. In the numerical formulation, the mean film thickness remains fixed in time, 
but the flow rate could vary with time. In fact, with the onset of wave motion, the 
flow rate increases, and the final steady flow rate in our numerical simulation would 
be greater than the experimental flow rate. The results of the nonlinear evolution 
are presented in terms of the film thickness h(x,t) at various instants of time and the 
spatial spectral coefficients cn(t), defined as 

n=N 

h(x, t )  = C Cn(t)einkx, 
n=-N 

where 2N is the number of mesh divisions in the streamwise direction. The initial 
amplitude of the disturbance is set to 6 = 0.05. 

The nonlinear flow evolution for the experimental condition, namely G = 18.2, 
S = 463.7, ,!3 = 71/2 and k = 0.07, is shown in figure 2. The experimental wavenum- 
ber k = 0.07 is smaller than the linear cut-off wavenumber k,  = 0.29 (Whitaker 
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Fluid o / p  (cm3 s-') I. (cm) Q (cm? s-') G S k 

alcohol at 16.8"C 29 1.77 0.123 18.2 463.7 0.07 
water at 19.6"C 14 0.80 0.201 60.0 4410 0.14 

TABLE I .  Experimental conditions of Kapitza & Kapitza(l949) and the relevant 
non-dimensional parameters. 

1964). The wave amplitude thus grows exponentially initially (figure 2a). Eventually, 
however, owing to the stabilizing capillary force, the growth is arrested, resulting in 
steady travelling waves (figure 2b). The dynamics of the nonlinear processes can be 
better quantified through the spatial spectral coefficients cn(t) (figure 2c). The fun- 
damental mode and its first few harmonics grow exponentially initially. Eventually, 
owing to the nonlinear stabilizing, they saturate in time, resulting finite-amplitude 
permanent waves travelling downstream at fixed wave speed c. The equilibrium 
wave profile obtained using the present method is compared with that reported by 
Kapitza & Kapitza (1949), Ho & Patera (1990) and Salamon et al. in figure 3. It is 
in good agreement with the measured wave profile of Kapitza & Kapitza (1949) and 
the numerically computed wave profiles of Ho & Patera (1990) and Salamon et al. 
(1994). The dominant crest has a teardrop profile with a sharp downstream slope and 
a long gently sloping tail. The sharp hump is preceded immediately downstream by 
small capillary waves. The free-surface profile is 'solitary wave' type and corresponds 
to the 'single wave' observed by Kapitza & Kapitza (1949) for wavenumbers much 
smaller than the cut-off wavenumber k,. The computed wave speed is 23.1 cm s-l 

which compares very well with the wave speed of 23.5 cm s-' reported by Salamon 
et al. (1994) and 24.7 cm s-' reported by Ho & Patera (1990). The experimental wave 
speed reported by Kapitza & Kapitza (1949) is 19.5 cm s-* which is appreciably 
lesser than the numerically computed wave speeds. As pointed out by Ho & Patera 
(1990) and Salamon et al. (19941, the experimental flow rate is imposed only as an 
initial condition in the numerical simulation, but owing to the onset of wave motion, 
there is an increase in the flow rate. Salamon et al. (1994) obtained better agreement 
with the experimental results when they adjusted their mean film thickness to take 
into account this aspect. 

The evolution of the initially imposed sinusoidal perturbation with amplitude 0.05 
for the case G = 60.0, S = 4410.0, p = 7c/2 and k = 0.14 is shown in figure 4. 
The wavenumber k = 0.14 is smaller than the linear cut-off wavenumber k, = 0.30. 
The wave amplitude grows exponentially initially (figure 4a). Unlike in the previous 
case however, the harmonic modes do not saturate in time (figure 4c). The spectral 
coefficients continuously oscillate in time, generating a quasi-periodic waveform?. The 
fundamental mode and its harmonics are continuously exchanging energy, without 
settling down to a stationary value. In fact, the total energy of the system defined as 

n=N 

n=-N 

t Quasi-periodicity is often used to mean superposition of two irrationally related periodic 
oscillations. In this paper however, we use it in a more general sense, i.e. it is used to refer to 
wave motion that is roughly oscillatory but not singly periodic. Consequently, the wave motion 
classified as quasi-periodic motion in this paper may have more than two irrationally related 
periodic oscillations and may be chaotic as well. 
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FIGURE 2. G = 18.2, S = 463.7, k = 0.07, f i  = n/2: (a) evolution of the spatial spectral 
coefficients Icn(t)l; and ( b )  shape of the permanent travelling wave. 

FIGURE 3. Permanent waveform for the case G = 18.2, S = 463.7, k = 0.07, fi  = n/2: (a) Kapitza 
& Kapitza (1949), ( b )  Salamon et al. (1994), ( c )  KO & Patera(l990), (d) Present numerical method; 
and (e )  integral boundary layer theory. 

was itself found to be continuously oscillating in time. The wave profiles at the two 
extremes, namely when the fundamental mode has the minimum energy ( t  = 77.75) 
and when the fundamental mode has the maximum energy ( t  = 78.90) are shown 
in figure 4(b).  These two wave profiles along with the steady wave profiles obtained 
by other researchers are shown in figure 5 .  The experimental wave profiles and the 
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FIGURE 4. G = 60.0, S = 4410.0, k = 0.14, fi  = x / 2 :  (a)  evolution of the spatial spectral coefficients 
I cn ( t ) l ;  and ( b )  film thickness at t = 77.75 (broken line) and t = 78.90 (continuous line). 

FIGURE 5. Permanent waveform for the case G = 60.0, S = 4410, k = 0.14, f l  = n /2 :  (a) Kapitza & 
Kapitza (1949), ( b )  Salamon et al. (1994), (c) Ho & Patera (1990), ( d )  Present numerical simulation 
at t = 77.75, ( e )  present numerical simulation at t = 78.90; and (f,g) integral boundary layer theory. 

previously reported numerical wave profiles agree better with the wave profile at 
t = 78.90. 

To summarize, for the first experimental condition (figure 2), we obtain a steady 
travelling waveform with solitary hump shape, and both the wave profile and wave 
speed are in good agreement with those reported previously. For the second ex- 
perimental condition, however, our full-scale computations predict a quasi-periodic 
waveform in contrast to the stationary waveforms reported previously. Recent exper- 
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iments of Liu & Gollub (1994) also indicate this type of quasi-periodic behaviour. 
In certain ranges of frequencies they could not observe saturated waves. This quasi- 
periodic behaviour is investigated in detail in the next section. Assuming for the 
moment that our numerical results are correct, it remains to be explained why 
Kapitza & Kapitza (1949)’ Ho & Patera (1990) and Salamon et al. (1994) did not 
observe this type of a behaviour. Since the wave profiles are not necessarily sinusoidal 
Kapitza & Kapitza (1949) defined the wave amplitude a as 

hmax - hmin 

hmax + hmin’ 
a =  (4.5) 

where hmax and hmin are respectively the maximum film thickness and the minimum 
film thickness. The wave amplitudes for different flow rates are given in figure 13 
of Kapitza & Kapitza (1949). The second experimental condition simulated by 
us corresponds to Q = 0.201 cm2 s-l, and for this flow rate they give two wave 
amplitudes, possibly because they did not observe well-defined stationary travelling 
waves. The other possibility is that their test section is not long enough for them to be 
able to observe well-defined quasi-periodic behaviour. From figure 4(c), we find that 
the system needs about 40 non-dimensional time units for the onset of quasi-periodic 
behaviour. Based on our non-dimensionalization this works out to be t = 1.34 s, and 
at a wave speed of 19.7 cms-’ it would be approximately 26 cm before well defined 
quasi-periodic behaviour can be observed. The length of the test section used by 
Kapitza & Kapitza (1949) is only 17 cm. 

5. Temporal stability analysis 
From the previous section, it appears that for wavenumbers smaller than the 

linear cut-off wavenumber k,, we do not always obtain steady travelling permanent 
waveforms. A similar result was shown experimentally by Liu & Gollub (1994). For 
excitation frequencies w closer to the linear cut-off frequency wc, they observed nearly 
sinusoidal saturated waves. As the frequency is reduced, however, in certain ranges of 
frequencies they observed quasi-periodic evolution in the downstream direction. The 
film thickness is however still periodic in time, but does not saturate in the streamwise 
direction. For much smaller wavenumbers, they observed steady travelling solitary 
waves. Thus, experimental evidence exists for quasi-periodic travelling waveforms. 
The experimentally investigated thin-film stability is a spatial one, where a periodic 
disturbances is imposed at the inlet. Our full-scale computations, from the previous 
section, tell us that this type of quasi-periodic travelling waves is also observed in 
the temporal stability analysis. The quasi-periodic behaviour was also observed by 
Hooper & Grimshaw (1985) in their solutions of the Kuramoto-Sivashinsky (KS) 
equation and by Joo & Davis (1992) in their numerical solutions of the long-wave 
evolution equation. Hooper & Grimshaw (1985) observed that for some wavenumbers 
the fundamental mode and its first harmonic are in a ‘bouncy state’, with continuous 
exchange of energy between them. Our own numerical solution of the integral 
boundary layer equations with the assumption of a parabolic velocity profile also 
indicate that this type of quasi-periodic behaviour is exhibited. A detailed temporal 
stability analysis of the thin-film flow is thus undertaken in this section to obtain the 
phase boundaries for this quasi-periodic waveforms. 

The long-time behaviour of the system is uniquely determined by G, S, p and 
k .  The non-dimensional number S can be written as S = TG’/3, where the new 
parameter T depends only on the fluid properties. We set p = 71/2 and T = 100, and 
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focus on fluids with moderate surface tension. Temporal stability is investigated for G 
up to 100. For each G, sinusoidal disturbances with amplitude 6 = 0.05 and various 
wavenumbers are imposed and their evolution in time is followed by the integration 
of the full-scale system (3.1), subject to the boundary conditions (2.2), (2.3), (2.4), 
(4.2). The temporal stability results for G = 5,25 and 100 and k = k M ,  k M / 2  and kM/4 
are first presented. The linear maximum growth rate wavenumber kM for the system 
is taken to be that given by Whitaker (1964) based on the numerical solution of the 
Orr-Sommerfeld equation. 

In figure 6, the evolution for G = 5 is shown for three wavenumbers, 0.10, 0.05 
and 0.025. The harmonic modes undergo very complicated interactions for smaller 
k.  However, they eventually saturate for all three wavenumbers, resulting in finite- 
amplitude permanent waves travelling downstream with a fixed wave speed. The 
harmonic content becomes broad-banded as the wavenumber is reduced, resulting 
in a ‘solitary wave’, preceded downstream by capillary ripples (figure 6 4 .  Further 
reduction in wavenumber results in more than one solitary pulse (figure 6 f ) .  Thus, 
very far away from the inlet, a solitary waveform is the preferred wave shape, and 
moreover, there appears to be a natural nonlinear wavelength that the system chooses 
to have. This natural nonlinear wavelength is different from the maximum growth 
rate wavelength AM predicted by linear theory. Also shown in figure 6 are the final 
permanent Waveforms predicted by the long-wave evolution equation of the Benney 
type (1.2). The agreement between the two is found to be very good, even though the 
long-wave theory over-predicts the full-scale numerical solution. 

The nonlinear evolution of the spatial harmonic coefficients c,(t) and the final 
permanent waveform for G = 25 and k = 0.30, 0.15 and 0.075 are shown in fig- 
ure 7. The initial exponential growth is followed by equilibration of the modes for 
all the three wavenumbers, resulting in finite-amplitude permanent waveforms trav- 
elling downstream with fixed wave speed on the gas-liquid interface. The notable 
difference from the G = 5 case is the substantially larger wave amplitude with the 
maximum wave height more than double the mean film thickness for the wavenumber 
k = 0.075 (figure 7 f ) .  As the wavenumber is reduced the waveform changes from 
nearly sinusoidal waves to broad-banded solitary waves. Attempts to solve the long- 
wave evolution equation of the Benney type for G = 25 have resulted in numerical 
breakdown for all three wavenumbers. This is not very surprising since it is valid 
only for G - O(1). The approximate integral boundary layer theory (1.4) valid for 
moderate Reynolds number is solved and the resulting wave profiles are plotted in 
figure 7(h, d, f ) .  We obtain excellent agreement between the full-scale computations 
and the integral boundary layer theory in this case. 

The nonlinear evolution of the harmonic coefficients for the case G = 100 and 
k = 0.40, 0.20 and 0.10 are shown in figure 8. For k = 0.4, the harmonic modes 
undergo complex nonlinear interactions. However, unlike those seen previously for 
G = 5 and G = 25, the harmonic modes do not saturate in time. Rather, they are 
oscillating in time, with continuous transfer of energy between the modes, which 
is also seen in the previous section (figure 4). This corresponds to a quasi-steady 
waveform and we do not observe a steady permanent waveform. A similar but more 
complex time behaviour is observed in the case of k = 0.20 (figure 8c). The wave 
profiles shown in figure 8(b ,d )  are consequently not the final permanent waveforms, 
but are the wave shape at a particular instant of time. However, for k = 0.10 (FZ k M / 4 ) ,  
the harmonic modes eventually saturate (figure 8e) ,  and the final permanent waveform 
(figure 8 f )  is solitary wave-like with a primary teardrop hump preceded downstream 
by several capillary ripples. Attempts to solve the integral boundary layer system 
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FIGURE 6. G = 5.0, T = 100, = n /2 :  ( a )  evolution of the spectral coefficients for k = 0.10(= k M ) ;  
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k = 0.05(% k M / 2 ) ;  ( d )  permanent wave profile for k = 0.05 (m k ~ / 2 ) ;  ( e )  evolution of spec- 
tral coefficients for k = 0.025 (= k M / 4 ) ;  (f) permanent wave profile for k = 0.025 (= kM/4) .  The 
wave profiles obtained using the longwave theory are shown in broken lines. 

(1.4) have failed. This is surprising, since G = 100 can still be considered as moderate 
Reynolds number. We think that the difference is due to the small surface tension 
parameter, namely T = 100. Significant wave steepening is observed in this case and 
the parabolic velocity profile and hydrostatic pressure assumptions may no longer 
be valid. The integral boundary layer theory of Lee & Mei (1995) is valid for large 
Reynolds number and moderate surface tension and may not encounter this problem. 

Before we proceed further, it will be worthwhile to look at the wave profiles at 
different instants of time to understand what is happening physically during the 
quasi-periodic evolution. The wave profiles at different times for the case G = 100 
and k = 0.20 are shown in figure 9. For clarity the free-surface profiles are shown over 
a three-wavelength domain. Particularly noteworthy is the growth of the subsidiary 
peak just upstream of the primary wave and its coalescence with the primary wave. 
At the end of this coalescence there are only three subsidiary peaks between any two 
primary humps. Very soon a new subsidiary peak develops and starts growing and 
merges with the primary maxima and the process is repeated. It is this phenomenon 
which results in the fluctuations of the harmonic modes and multiple periodic states 
wave profiles. This particular phenomenon of the growth of the subsidiary peak 
and its merger with the primary hump has also been observed experimentally by 
Liu & Gollub (1994). Thus, in the transition from nearly sinusoidal permanent waves 
to a solitary wave train there exists a band of wavenumbers (frequencies) where the 
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FIGURE 7. G = 25.0, T = 100, fl  = n /2 :  (a) evolution of the spectral coefficients fork = 0.30 (= k M ) ;  
(b)  final permanent waveform for k = 0.30 (= k M ) ;  (c) evolution of spectral coefficients for 
k = 0.15 (= k M / 2 ) ;  ( d )  final permanent waveform for k = 0.15 (= k M / 2 ) ;  (e) evolution of spectral 
coefficients for k = 0.075 (m k M / 4 ) ;  and (f) final permanent waveform for k = 0.075 (= k M / 4 ) .  The 
wave profiles obtained using the integral boundary layer theory are shown in broken lines. 

solitary humps are too closely packed, resulting in interaction between the subsidiary 
waves and the primary hump. No permanent waveform is observed in this case, but 
the quasi-periodic behaviour is observed. 

The simulations for G = 5,25,100 also seem to indicate that the band of wavenum- 
bers for which we observe quasi-periodic behaviour increases in size with increasing 
Reynolds numbers. An extensive parametric search in the range 5 < G < 100, has 
been performed to obtain the phase diagram shown in figure 10. The transition 
from finite-amplitude nearly sinusoidal waves to a solitary wave train goes through 
a transition regime, in which we do not observe periodic waveforms but most likely 
observe quasi-periodic waveforms. Beyond wave inception, the amplitude of the 
disturbance grows quickly and saturates due to nonlinear interactions resulting in sat- 
urated finite-amplitude waves. This is the primary surface-wave instability in thin-film 
flows, which is susceptible to secondary subharmonic and sideband instabilities. These 
secondary instabilities lead to coalescence between the neighbouring peaks, leading 
to the formation of solitary waves, which are the stable waveform far away from 
the source (Cheng & Chang 1995). The quasi-periodic behaviour observed in our 
temporal stability analysis is a manifestation of the secondary sideband instability. 
As the wavenumbers are reduced further however, a window of stable waveforms 
reappears due to the secondary subharmonic instability. 
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k = 0.20 (= k w / 2 ) ;  (e )  evolution of spectral coefficients for k = 0.10 (1: k w / 4 ) ;  and (f) final 
permanent waveform for k = 0.10 (= k M n / 4 ) .  

6. Spatio-temporal evolution of the thin-film instability 
In the previous section, we studied the temporal evolution of the surface wave 

instability in a periodic domain. In reality, the fluid domains are not restricted by 
periodicity, and the surface wave evolves both spatially as well as temporally, allowing 
complex wave interactions such as wave mergers and wave splitting. Spatio-temporal 
evolution of the instability and the wave interaction processes are thus studied in this 
section. 

6.1. Long domain with periodic boundary conditions 
The parameters are chosen as G = 5,  T = 100, p = n/2,  and the length of the 
streamwise periodic domain is set to 20ilM. In the first 1/20th of the domain, i.e. for 
0 < x < A M ,  the equilibrium wave profile (figure 6b) computed previously is imposed 
as the initial condition and the rest of the domain is undisturbed. In the absence of 
external forcing, the natural waves that evolve downstream of the wave inception are 
of wavelength AM (Chang 1994). This type of initial condition helps us understand 
how these natural waves evolve further downstream. 

The dispersion of the initially imposed wave is shown in figure l l(a).  The primary 
surface wave instability being convective in nature, the initial wave is transported 
downstream. In the process, however, the initial wave disperses into several capillary 
waves. The front running wave quickly attains the shape of a solitary hump and 
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FIGURE 9. G = 100, T = 100, k = 0.20 and B = z/2: free-surface profiles at different 
instants of time shown in a six-wavelength domain. 

travels downstream at a constant velocity and without further generation of waves. 
Each of the trailing waves as they travel downstream evolves into a solitary waves 
with sharp downstream slope and a gently sloping tail (figure l lb ) .  Thus, very far 
away from the source, the stable waveform is a solitary waveform. The domain 
being periodic, the wave leaving the domain at the right enters at the left. The 
speed of the wave is seen to be proportional to the wave amplitude. This fact was 
also observed experimentally by Liu & Gollub (1994). The larger-amplitude solitary 
waves travel faster and run into small capillary waves (figure l l c ) .  There does not 
appear to be any repulsion between the two waves as they come close to each other. 
At the end of the wave coalescence, a still larger amplitude is formed, which travels 
downstream leaving behind a quiescent interface devoid of any small-scale ripples. 
The coalescence between the large-amplitude solitary wave and the relatively smaller- 
amplitude capillary ripples is thus an inelastic one. This type of wave interactions goes 
on for a long time, until the only waves seen on the interface are of the solitary-wave 
type (figure 1 Id). Since the solitary pulses have nearly the same shape and amplitude 
they all travel with nearly the same speed and no more wave merging or wave splitting 
phenomena are found to occur. However, there seems to be nonlinear interaction 
between the solitary pulses which prevents the harmonic modes from settling down to 
a constant state resulting in a steady travelling solitary wavetrain. Instead, we observe 
continuous transfer of energy between the various modes resulting in a quasi-periodic 
behaviour, which was also observed previously in the temporal stability analysis ($5) .  
About t = 2000, a solitary wavetrain with 1 1  solitary pulses is formed in the domain. 
Even after integrating in time up to t = 4500, the number of pulses is found to remain 
the same, namely 1 1  in a domain of length 2OLM (figure 1 Id). The only changes in 
the domain are the relative spacing between the different solitary pulses. The solitary 
pulses are continuously interacting with each other to arrive at an appropriate relative 
distance. However, the temporal saturation of the solitary wavetrain is not complete 
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wavenumber k, and the maximum growth rate wavenumber kM are taken from Whitaker (1964) 
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in the numerical integration time 0 < t < 4500. A much longer time of integration 
may be required before complete temporal saturation can be obtained. 

For the same simulation parameters as above, namely G = 5, T = 100, p = 71/2 
and a streamwise-periodic domain with length L = 2OAM, an exponential pulse of 
the form h(x,  0) = 1 + 0.05e(-0~01(”-L/2)2) is initially imposed, and its spatio-temporal 
evolution is studied. The initial dispersion of this disturbance and the evolution 
into solitary waveform is shown in figure 12(a). The spatio-temporal evolution 
is qualitatively the same as that seen previously, with complicated wave splitting 
and wave mergers taking place continuously, until a solitary wavetrain is formed 
(figure 12b). The notable difference from the previous simulation is the presence of 
13 solitary pulses in the wavetrain in a domain of size 2 0 L ~ .  Just as in the previous 
case, after the formation of a solitary wavetrain with 13 solitary pulses (around 
t = 2000), further integration in time (up to t = 4355) is only found to change the 
relative spacing between the pulses, without changing the number of solitary pulses 
in the domain. Thus the relative spacing between the solitary pulses, or the natural 
nonlinear wavelength, is found to be weakly dependent on the initial conditions. 

The question of wave breaking in laminar thin film flows is still an open one, and 
no conclusive theoretical, experimental or numerical evidence on this effect exists 
to date. The tendency for wave breaking arises from the thickness dependence of 
the local phase speed, with the crests travelling faster than the troughs resulting in 
steepening of the wave. The wave interaction processes described in this section could, 
however, inhibit the wave breaking tendency. 

Theoretical interest has focused on determining if the approximate evolution equa- 
tions such as the Kuramoto-Sivashinsky equation and the long-wave evolution equa- 
tion of the Benney type admit wave breaking solutions. The Kuramoto-Sivashinsky 
(KS) equation can accurately model evolution of the surface wave instability in 
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thin-film flows in the limit of small wave amplitude and large surface tension. The 
solutions of the KS equation are, however, smooth at all times and do not exhibit any 
wave breaking tendency. Rosenau & Oron (1989) hypothesized that this is due to the 
over-prediction of the effect of surface tension in the KS equation and proposed a 
modification to the curvature term in the KS equation. They retained the higher-order 
terms in the denominator of the curvature and called their modified KS equation the 
regularized Kuramoto-Sivashinsky equation (RKS). Through numerical experiments, 
they show that in certain range of parameters the RKS equation exhibits a wave 
breaking tendency. Joo & Davis (1991) demonstrate that the long-wave evolution 
equation of the Benney type (1.2) also exhibits the numerical blowup behaviour. 
However, both KS and longwave evolution equations are based on the assumption 
of finite wave amplitude and spatial gradients and lose their validity long before the 
onset of wave breaking. Thus, it would be interesting to determine if the numerical 
blowup of these evolution equations really implies wave breaking. The numerical pa- 
rameters chosen by Rosenau & Oron (1989) are simulated using our full-scale model 
and the results are shown in figure 13. We find that the harmonic modes eventually 
saturate implying that finite-amplitude permanent waveforms are the stable solution 
for these simulation parameters. This is contrary to what has been observed by 
Rosenau & Oron (1989) in their solution of the RKS equation. The RKS equation 
thus appears to have no physical relevance. 

6.2. Long domain with non-periodic boundary conditions 
Up to now, all the domains considered are periodic in the streamwise direction, 
and what is studied is strictly the temporal stability of the thin-film flows. In the 
experimental studies of thin-film instability, however, a periodic disturbance either in 
the form of pressure fluctuations or film thickness perturbations is imposed at the inlet 
and the evolution of this disturbance in the streamwise direction is measured (spatial 
stability analysis). For infinitesimal disturbances (linear stability), temporal and spatial 
stability give us equivalent critical conditions. When the disturbances are of finite 
amplitude (nonlinear stability) this is not always the case, and additional information 
can be obtained by considering both approaches. In this section, the spatial stability of 
the thin-film flows is studied numerically in a manner akin to the physical experiments. 
For this purpose, the experimental conditions of Liu & Gollub (1994) are simulated. 
They studied the solitary wave dynamics of thin film flows, using a 54% by weight 
aqueous solution of glycerin and imposing periodic pressure fluctuations at the inlet. 
The angle of inclination f l  = 6.4"; and the mean film thickness is ho = 0.12789 cm. 
These experimental conditions correspond to G = 520.32, S = 676.65, and T = 84.10. 
The film thickness at the inlet is perturbed in the following manner: 

h(0, t )  = 1 + 6 sin (cot) ,  (6.1) 

where co and 6 are respectively the non-dimensional angular frequency and amplitude 
of the external periodic forcing. The velocity boundary conditions at the inlet are of 
the Dirichlet type and are imposed based on the lubrication approximation and in 
such a way that the continuity equation is satisfied: 

u(0, y, t )  = G sinp h(0, t )y  - - , ( 3 ( 6 . 2 ~ )  

1 ah y2  
u(O,y,t) = ---. 

2 a t  2 
(6.2b) 
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FIGURE 11. G = 5.0, T = 100.0, p = n/2 and length of the domain = 2OAM with periodic boundary 
conditions in the streamwise direction. The free-surface profiles shown are in intervals of At = 5. 
(a) t = 0 to t = 250; (b)  t = 250 to t = 500; (c) t = 750 to t = 1000; ( d )  t = 5240 to t = 5490. 

At the exit x = L, Sommerfeld radiation boundary conditions are imposed in a 
manner similar to that proposed by Orlanski (1976) to let the waves leave the 
computational domain with minimum reflection. 

First we present our results corresponding to a 1.5 Hz forcing frequency (figure 3 
in Liu & Gollub 1994). The amplitude of the disturbance is set to 6 = 0.05. 
The film thickness h(x,t) at various instants of time from t = 0 to t = 10 in 
steps of 0.4 is shown in figure 14(a). The primary instability being convective, the 
disturbance is transported downstream by the mean flow. According to the linear 
stability theory the cut-off frequency for the onset of instability is o, = 37.05. Since 
the imposed frequency is much smaller than the cut-off frequency, the most likely 
waveform is a solitary waveform, and that is what is observed. The amplitude of 
the disturbance quickly grows downstream and the wave becomes asymmetrical, with 
a sharp upstream slope and a gently trailing tail. Several small-amplitude capillary 
ripples are formed downstream of the primary hump. In figures 14(b) and 14(c) the 
subsequent free surface profiles in steps of 0.4 are shown. The wave travelling at 
the front grows in amplitude, travels faster and ultimately leaves the computational 
domain. After the initial growth, the wave profile does not appear to change much 
in its journey downstream. Thus the gas-liquid interface is filled with solitary 
humps having teardrop profiles and there appears to be spatial saturation in the 
waveform. Further downstream however, spatio-temporal chaos and transverse three- 
dimensional instabilities will set in. The free-surface profile given by Liu & Gollub 
(1994) is compared to a numerically computed free-surface profile in figure 15. The 
agreement between the experimental and numerical profiles is not good in the first 
half of the domain. This is most probably due to a difference in the amplitude of 
the inlet excitation. The saturated wave profiles in the later part of the domain 
(figure 15c), however, show very good agreement. The significant difference is that 
the amplitude of the wave as predicted by the numerical calculations is slightly more 
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FIGURE 12. G = 5.0, T = 100.0, ,8 = n/2 and length of the domain L = 2 0 1 ~ ,  periodic 
boundary conditions in the streamwise direction and the initial disturbance on the free surface is 
an exponential disturbance of the form h(x, 0) = 1 + 0.05e(-0~0'(x-L/2)2). The free-surface profiles are 
shown in intervals of At = 5. (a) t = 0 to t = 250; and (b)  t = 4105 to t = 4355. 

than the experimental value. The capillary ripples downstream of the primary hump 
are captured quite well by the numerical solution. 

The experimental conditions simulated next are same as the above except that the 
inlet forcing frequency is increased to 4.5 Hz and the amplitude of the excitation 
is taken to be 6 = 0.01. The free-surface profiles in time-steps of 0.4 are shown in 
figure 16(u-c). The inlet forcing frequency controls the spacing between the solitary 
humps. In this case the frequency is quite high and the solitary humps are too close 
to each other and never settle down to achieve steady travelling waveforms. This 
is analogous to the quasi-periodic behaviour we observed for some wavenumbers in 
the study of temporal instability. The experimental and numerical wave profiles are 
compared in figure 17. Just as in the previous case, the agreement is not very good 
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FIGURE 13. Rosenau & Oron (1989)'s wave breaking simulation with simulation parameters 
G = 16.0, S = 51.63, 1 = n 12 and k = 0.2783. 

in the first part of the domain (figure 17a). This either due to a difference in the 
forcing amplitude at the inlet or due to a difference in the way the flow is excited at 
the inlet. Liu & Gollub (1994) impose fluctuations in the pressure, where as in the 
numerical simulations the film thickness is excited. In the later part of the domain 
the agreement is very good (figure 17b,c). Since the solitary waves are too closely 
packed we do not observe spatial saturation. 

Lastly, keeping the same experimental conditions as above, but increasing the inlet 
forcing frequency to 7 Hz, we obtain nearly sinusoidal film profiles as shown in 
figure 18. The waves are closely packed, nearly sinusoidal and symmetrical. The 
forcing frequency in this case is close to the cut-off frequency, hence the almost 
sinusoidal wave profile. The comparison with experiments is very good in this case 
also (figure 18b,c). 

In 54, the experimental conditions of Kapitza & Kapitza (1949) were simulated nu- 
merically in a periodic domain. For one of the experimental conditions (figures 4,5), 
our full-scale numerical simulations predict a quasi-periodic waveform in contrast to 
the periodic waveforms reported by Kapitza & Kapitza (1949). The same experimen- 
tal conditions are now numerically simulated in a long non-periodic domain and the 
spatial evolution of the disturbance is simulated in a manner similar to the physical 
experiments; the results are shown in figure 19. No spatial saturation is observed in 
the stream-wise direction and the wave profile is quasi-periodic consistent with the 
temporal stability predictions. 

7. Concluding remarks 
Extensive numerical simulations based on the direct solution of the Navier-Stokes 

equations reveal some interesting features of the thin-film instability. In concurrence 
with what is known about thin-film instability based on linear and approximate non- 
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FIGURE 15. G = 520.32, S = 676.65, /3 = 6.4" and corresponds to the experimental conditions of Liu 
& Gollub (1994) (figure 3). A sinusoidal perturbation of the form h(0, t )  = 1 f0.05 sin(2.4546t) is im- 
posed at the inlet. The wave profiles (h/ho versus x) shown on the left are obtained computationally 
and the ones shown at the right are those measured by Liu & Gollub (1994) (figure 3). 

linear theories, finite-amplitude waveforms are the stable solution for wavenumbers 
smaller than the linear cut-off wavenumber k,.  For wavenumbers close to k,, the 
waveforms are nearly sinusoidal. For wavenumbers much smaller than k,, the wave- 
forms are solitary-wave-like. This transition from nearly sinusoidal waveforms to 
solitary waveforms seem to pass through a quasi-steady regime, in which the spatial 
harmonic coefficients are in a state of constant fluctuations. The phase boundary 
delineating this regime has been obtained through extensive numerical simulations. 

Comparison between the full-scale computations and approximate nonlinear theo- 
ries indicates that these theories are accurate in the parametric regimes for which they 
are derived. Since only a very small number of comparisons have been made it was 
not possible to derive definite boundaries delineating the regimes where the approxi- 
mate nonlinear theories are accurate. Both the Reynolds number G and the surface 
tension parameter T influence the accuracy of the approximate nonlinear theories. 
For moderate surface tension ( T  = 100) and vertically draining film, the lubrication 
theory of the Benney type (1.2) was found to give accurate predictions for G = 5 
and the integral boundary layer theory (1.4) was found to give accurate predictions 
for G = 25. However, for G = 100, the integral boundary layer theory based on a 
parabolic velocity profile and hydrostatic pressure approximation (1.4) could not be 
solved. A more accurate boundary layer theory such as the one developed by Lee & 
Mei (1995) retaining the higher-order terms in the hydrostaic pressure approximation 

FIGURE 14. G = 520.32, S = 676.65, /3 = 6.4" and corresponds to the experimental conditions of Liu 
& Gollub (1994) (figure 3). A sinusoidal perturbation of the form h(0,t) = 1 + 0.05 * sin(2.4546t) 
is imposed at the inlet. The free-surface profiles shown are shown in intervals of 0.104 s from: (a )  
t = 0 to t = 2.60 S; ( b )  t = 2.60 s to t = 5.20 S ;  (c) t = 5.20 s to t = 7.80 S. 
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FIGURE 17. G = 520.32, S = 676.65, f i  = 6.4" and corresponds to the experimental conditions of Liu 
& Gollub (1994) (figure 7). A sinusoidal perturbation of the form h(0, t )  = 1 +0.05 sin(7.3638t) is im- 
posed at the inlet. The wave profiles (h/ho versus x) shown on the left are obtained computationally 
and the ones shown at the right are those measured by Liu & Gollub (1994) (figure 7). 

may have to be used in this range of parameters. However, in the event of large wave 
amplitude and/or wave steepening, none of the appproximate nonlinear theories can 
be used, and experiments or full-scale computations based on the solution of the 
complete Navier-Stokes equations will need to be used. 

The spatial stability analysis of the thin-film instability has also been studied by 
considering a very long domain with periodic forcing at the inlet and absorbing 
boundary conditions at the exit. Very good agreement with the experiments of Liu & 
Gollub (1994) has been obtained. Depending on the frequency of excitation, the waves 
formed downstream are either nearly sinusoidal or solitary-like or quasi-periodic. 

Owing to the amplitude dependence of the wave speed, complex wave interac- 
tions are likely to occur on the gas-liquid interface. Waves with larger amplitude 
travel faster and coalesce with smaller waves. This wave interaction is found to be 
completely inelastic and the resultant wave grows further in amplitude and travels 
downstream leaving behind a nearly flat interface. However, there appears to be 
a natural wavelength that the system tries to achieve in the solitary wave regime. 
The resultant wavelength downstream is also weakly dependent on the initial condi- 
tion. 

A powerful numerical technique has been developed and applied to the study of 
surface wave instability in isothermal thin-film flows. A natural extension of the nu- 
merical procedure would be to do three-dimensional simulations. Very far away from 

FIGURE 16. G = 520.32, S = 676.65, fi  = 6.4" and corresponds to the experimental conditions of Liu 
& Gollub (1994) (figure 7). A sinusoidal perturbation of the form h(0, t )  = 1 + 0.01 sin(7.3638t) is 
imposed at the inlet. The free-surface profiles are shown in intervals of 0.104 s from: (a) t = 0 to 
t = 2.60 s; ( b )  f = 2.60 s to t = 5.20 s;  and (c) t = 6.656 s to t = 9.40 s. 
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is imposed at the inlet. (a) Film thicknesses in intervals of 0.104 s from t = 7.6 s to t = 9.6 s; 
( b )  numerically computed free surface profile (h/ho versus x); and ( c )  experimentally reported film 
thickness profile (h/ho versus x) (figure 8 in Liu and Gollub 1994). 
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FIGURE 19. G = 60.0, S = 4410, fi  = 7t/2 and w = 5.707. At the inlet the free surface is perturbed 
as follows: h(0, t )  = 1 + 6 sin (wt). The free-surface profiles in steps of 0.033 s are shown. 

the source the nonlinear waves are three-dimensional. A numerical procedure based 
on the direct solution of the three-dimensional Navier-Stokes equations would help 
us understand this nonlinear wave regime. Krishnamoorthy (1996) has already done 
some three-dimensional numerical studies of both isothermal and heated thin-film 
flows and addressed the question of rupture and rivulet formation. Liu, Schneider 
& Gollub (1995) have done a detailed experimental study of three-dimensional in- 
stabilities. It would be very interesting to perform direct numerical simulation of 
three-dimensional instabilities and make comparisons with the experimental observa- 
tions of Liu et al. (1995). 
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